
Définitions

Un repère du plan est déterminé par un point quelconque O, appelé origine du

repère, et deux vecteurs  et  non colinéaires.

Définitions

On dit que le repère  est :

orthogonal : si les vecteurs  et  sont orthogonaux

orthonormé ou orthonormal : si le repère est orthogonal et si les vecteurs 

et  ont la même norme.

Vecteurs et coordonnées
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Repère orthonormé

Définitions

Soit  un repère du plan.

On dit que  a pour coordonnées  si et seulement si :

On dit que  a pour coordonnées  si et seulement si :

Par la suite, on considère que le plan P est muni d’un repère .
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Deux vecteurs  et  sont égaux si et seulement si ils ont les mêmes

coordonnées.

Propriété

Soient  et . Le vecteur  a pour coordonnées

Exemple

Soient 

Les coordonnées de  sont 

Les coordonnées de  sont 

 donc  est un parallélogramme. ( voir Généralités sur les vecteurs )

Propriétés

Soient deux vecteurs  et .

Le vecteur  a pour coordonnées 

Le vecteur  a pour coordonnées 
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Colinéarité

Deux vecteurs non nuls  et  sont colinéaires si et seulement si:

Propriété

Milieu d’un segment

Si  et , le milieu  de  a pour coordonnées :

Propriété

Norme et distance

Soit un vecteur . Alors :

On en déduit si  et  :

Exemple

Soient .

Que peut-on dire du triangle  ?
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Donc 

De plus :

Le triangle  est donc rectangle en  (réciproque du théorème de Pythagore) et

isocèle.
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