Python au lycée (3) : Les
boucles

L'un des intéréts de la programmation est de pouvoir faire exécuter facilement a une
machine des taches répétitives.

Le langage Python propose deux instructions : « for » et « while » qui permettent de
répéter automatiquement I'exécution de certains blocs de code.
\id{h05}

1. Les boucles « For » (Boucles bornées)

Une boucle « for » (ou boucle « pour » ou boucle bornée) est généralement utilisée
lorsque I'on connait le nombre de répétitions que I'on souhaite exécuter.

La syntaxe de cette instruction est la suivante :

for variable in [liste de valeurs] :
bloc d'instructions a répéter

instructions a exécuter une fois la boucle terminée
Ce programme se déroule de la maniére suivante :

e les «instructions a répéter » sont exécutées en donnant a la « variable » chacune
des valeurs de la « liste de valeurs » ; ¢ »est I'indentation (écriture décalée vers la
droite) qui détermine la taille du bloc d'instructions a répéter

e une fois que tous les items de la liste ont été parcourus, le programme passe au
« instructions a exécuter une fois la boucle terminée ».

Par exemple, le programme Python ci-dessous :

for 1 in [1, 2, 5, 11] :
j = i**2 # calcul du carré de i

print(j, end=" - ') # affichage~; on sépare les valeurs par des tirets

print("fin")

affichera :
1-4-25-121-fin
ce qui correspond aux carrés des nombres de la liste.

Remarque : on aurait pu faire I'économie de la variable j, en écrivant plus simplement
« print(i**2, end="-") » mais le but, ici, était de montrer qu'un bloc pouvait comporter
plusieurs lignes.

Avec l'instruction for on utilise frequemment la fonction range ;
en effet, range(a,b) renvoie la liste des entiers compris (au sens large) entreaetb - 1.

Attention

L'instruction range(a,b) créer une liste qui s'arréte a l'entier b -1 et non a l'entier
b!

Par exemple, le programme suivant affiche les doubles des nombres entiers compris
entre 3et5:

for i in range(3, 6) :
print(2*i, end="' - ') # affiche 6 - 8 - 10 -

Remarque : sil'on utilise l'instruction range avec un seul parametre b, celle-ci
retournera la liste des entiers compris entre O et b -1:

for i in range(4):
print(i, end=' - ') # affiche 0 - 1 -2 - 3 -

\id{h10}

2. Les boucles « while » (Boucles non
bornées)

On utilise une boucle while (ou boucle « Tant que » ou boucle non bornée) lorsque I'on
doit répéter I'exécution d'un bloc d'instructions tant qu’une condition est vérifiée
(mais en général, on ne sait pas au préalable le nombre de répétitions que I'on devra
effectuer). La encore, c'est I'indentation qui détermine la fin du bloc d'instructions a
répéter.

La syntaxe de l'instruction « while » est :

while condition
#bloc d'instructions a répéter

##instructions a exécuter une fois la boucle terminée

Le programme se déroule alors de la fagon suivante :

e tant que la « condition » de la ligne 1. est vraie, les « instructions a réepéter » de la
ligne 2. sont exécutées

e dés que la « condition » de la ligne 1. devient fausse, le programme passe aux
« instructions a exécuter une fois la boucle terminée » (ligne 3.).

Par exemple, le programme ci-dessous affiche la plus petite puissance de 2 qui est
supérieure ou égale a 1000 :

i =1# initialisation de i
while i < 1000 :
i=1%*2

print(i) # affiche 1024

A chaque passage a la ligne 3., on multiplie la valeur précédente de de i par 2. On
obtient ainsi les puissances successives de 2.

Pour bien comprendre comment fonctionne ce programme, il peut étre utile de
représenter les différentes valeurs de i et de la condition i < 1000 dans un tableau :

1 1 2 4 8 16 32 64 128 256 512 102
P < : : : : : : : : : s
vrai | vrai | vrai | vrai | vrai | vrai | vrai | vrai vrai vrai au
1000

L'utilisation de l'instruction while peut étre assez délicate ; si, suite a une erreur de
programmation, la condition figurant dans le while est toujours vérifiée, le programme
ne sortira jamais de la boucle et tournera indéfiniment (sauf si un intervenant extérieur
met fin a son exécution...)

En particulier, il faut faire attention aux points suivants :

e penser a initialiser les variables avant l'instruction while : dans notre exemple,
python provoquerait une erreur si la ligne 1. (initialisation de i) était manquante.

e la condition figurant aprés l'instruction while est celle qui permet de rester dans la
boucle ; c'est donc le contraire de la condition de sortie de boucle. Dans I'exemple
précédent, on souhaitait sortir de la boucle lorsque la valeur de i était supérieure
ou égale a 1000 ; il fallait donc coder i < 1000 a l'intérieur de I'instruction while.

