
L’un des intérêts de la programmation est de pouvoir faire exécuter facilement à une

machine des tâches répétitives.

Le langage Python propose deux instructions : « for » et « while » qui permettent de

répéter automatiquement l’exécution de certains blocs de code.

\id{h05}

1. Les boucles « for » (Boucles bornées)

Une boucle « for » (ou boucle « pour » ou boucle bornée) est généralement utilisée

lorsque l’on connaît le nombre de répétitions que l’on souhaite exécuter.

La syntaxe de cette instruction est la suivante :

for variable in [liste de valeurs] :
 # bloc d'instructions à répéter

instructions à exécuter une fois la boucle terminée

Ce programme se déroule de la manière suivante :

les « instructions à répéter » sont exécutées en donnant à la « variable » chacune

des valeurs de la « liste de valeurs » ; c »est l’indentation (écriture décalée vers la

droite) qui détermine la taille du bloc d’instructions à répéter

une fois que tous les items de la liste ont été parcourus, le programme passe au

« instructions à exécuter une fois la boucle terminée ».

Par exemple, le programme Python ci-dessous :

for i in [1, 2, 5, 11] :
 j = i**2 # calcul du carré de i

Python au lycée (3) : Les
boucles

 print(j, end=' - ') # affichage~; on sépare les valeurs par des tirets
print("fin")

affichera :

1 – 4 – 25 – 121 – fin

ce qui correspond aux carrés des nombres de la liste.

Remarque : on aurait pu faire l’économie de la variable j, en écrivant plus simplement

« print(i**2, end=’ – ‘) » mais le but, ici, était de montrer qu’un bloc pouvait comporter

plusieurs lignes.

Avec l’instruction for on utilise fréquemment la fonction range ;

en effet, range(a,b) renvoie la liste des entiers compris (au sens large) entre a et b – 1.

Attention

L’instruction range(a,b) créer une liste qui s’arrête à l’entier b -1 et non à l’entier

b !

Par exemple, le programme suivant affiche les doubles des nombres entiers compris

entre 3 et 5 :

for i in range(3, 6) :
 print(2*i, end=' - ') # affiche 6 - 8 - 10 -

Remarque : si l’on utilise l’instruction range avec un seul paramètre b, celle-ci

retournera la liste des entiers compris entre 0 et b – 1 :

for i in range(4):
 print(i, end=' - ') # affiche 0 - 1 - 2 - 3 -

\id{h10}

2. Les boucles « while » (Boucles non
bornées)

On utilise une boucle while (ou boucle « Tant que » ou boucle non bornée) lorsque l’on

doit répéter l’exécution d’un bloc d’instructions tant qu’une condition est vérifiée

(mais en général, on ne sait pas au préalable le nombre de répétitions que l’on devra

effectuer). Là encore, c’est l’indentation qui détermine la fin du bloc d’instructions à

répéter.

La syntaxe de l’instruction « while » est :

while condition :
 #bloc d'instructions à répéter

#instructions à exécuter une fois la boucle terminée

Le programme se déroule alors de la façon suivante :

tant que la « condition » de la ligne 1. est vraie, les « instructions à répéter » de la

ligne 2. sont exécutées

dès que la « condition » de la ligne 1. devient fausse, le programme passe aux

« instructions à exécuter une fois la boucle terminée » (ligne 3.).

Par exemple, le programme ci-dessous affiche la plus petite puissance de 2 qui est

supérieure ou égale à 1 000 :

i = 1 # initialisation de i
while i < 1000 :
 i = i * 2
print(i) # affiche 1024

À chaque passage à la ligne 3., on multiplie la valeur précédente de de i par 2. On

obtient ainsi les puissances successives de 2.

Pour bien comprendre comment fonctionne ce programme, il peut être utile de

représenter les différentes valeurs de i et de la condition i < 1000 dans un tableau :

1 2 4 8 16 32 64 128 256 512 102

vrai vrai vrai vrai vrai vrai vrai vrai vrai vrai fau

i

i <
1000

L’utilisation de l’instruction while peut être assez délicate ; si, suite à une erreur de

programmation, la condition figurant dans le while est toujours vérifiée, le programme

ne sortira jamais de la boucle et tournera indéfiniment (sauf si un intervenant extérieur

met fin à son exécution…)

En particulier, il faut faire attention aux points suivants :

penser à initialiser les variables avant l’instruction while : dans notre exemple,

python provoquerait une erreur si la ligne 1. (initialisation de i) était manquante.

la condition figurant après l’instruction while est celle qui permet de rester dans la

boucle ; c’est donc le contraire de la condition de sortie de boucle. Dans l’exemple

précédent, on souhaitait sortir de la boucle lorsque la valeur de i était supérieure

ou égale à 1000 ; il fallait donc coder i < 1000 à l’intérieur de l’instruction while.

