
1. Types de variables

Dans le langage Python, chaque variable et chaque constante possède un type.

Les principaux types de base sont :

int (integer) : nombre entier comme 5 ou -12345678901234567890

float (floating-point number) : nombre décimal comme 0.0001 ou 3.141592654

str (string) : chaîne de caractères comme « Bonjour toto123 ! » ou « A »

D’autres types (booléens, nombres complexes, listes, …) seront vus dans des

chapitres ultérieurs.

L’instruction « type » renvoie le type d’une expression. Par exemple :

>>> type(1) # affiche
>>> type(1.5) # affiche

>>> type('A') # affiche
>>> type(True) # affiche

Remarque :

Dans l’exemple ci-dessus, les chevrons >>> indiquent que les commandes ont été

saisies en mode interactif – sous IDLE par exemple.

Les # indiquent le début d’un commentaire ; ici, les commentaires sont utilisés pour

indiquer le résultat de l’instruction.

Affectation d’une valeur à une variable

On affecte une valeur à une variable grâce au symbole « = ». Par exemple,

l’instruction :

Python au lycée (1) : Les
variables

a=2

crée la variable a (si elle n’existait pas déjà)

affecte la valeur 2 à la variable a

définit le type de a (ici : int)

En Python, il n’est pas nécessaire de déclarer préalablement les variables ou leur type.

Python détermine de façon dynamique le type d’une variable en fonction de sa valeur.

Il est ainsi possible de changer le type d’une variable à l’intérieur d’un programme.

Par exemple :

a=1 # a est de type 'int'
a='Bonjour' # ne provoque pas d'erreur. a est maintenant de type 'str'

Le nom d’une variable doit être composé uniquement de lettres, de chiffres et du

symbole « _ » (underscore). Il ne doit pas commencer par un chiffre.

Exemple :

ma_variable=5 # correct
ma-variable=5 # incorrect
variable1=5 # correct
1variable=5 # incorrect

Enfin, signalons que la casse (distinction majuscule/minuscule) est également prise en

compte :

MaVariable et mavariable représentent deux variables différentes.

Instructions d’entrée/sortie

La fonction print affiche à l’écran la valeur d’une variable ou d’une constante. Il est

possible d’afficher plusieurs valeurs en les séparant par une virgule.

Par exemple :

x=12
print('La valeur de x est',x) # affiche : La valeur de x est 12
print('Le type de x est',type(x)) # affiche : Le type de x est

La fonction input est utilisée pour permettre à l’utilisateur d’entrer des données. Elle

suspend le programme jusqu’à ce que l’utilisateur saisisse un texte. Lorsque

l’utilisateur valide sa saisie à l’aide de la touche la fonction renvoie le texte saisi et le

programme reprend son exécution.

Il est possible d’indiquer en paramètre de la fonction input une chaine de caractères

qui sera affichée pour guider l’utilisateur (« prompt »).

Par exemple :

a=input('Saisir une valeur') # a recevra la valeur saisie
print('La valeur de a est',a) # affiche : La valeur de a est

La valeur saisie par l’utilisateur est toujours considérée par Python comme étant de

type str. Pour obtenir un autre type de données, il faut transtyper la valeur saisie.

Exemple :

a=input('Saisir une valeur : ') # a sera du type string
a=int(input('Saisir une valeur entiere : ')) # a sera du type int
a=float(input('Saisir une valeur decimale : ')) # a sera du type float

2. Type « int »

À partir de la version 3 de Python, il n’y a pas de limite (autre que la mémoire de

l’ordinateur) au nombre de chiffres que peut avoir un entier :

print('2 puissance 100 =', 2^100)
 # affiche : 2 puissance 100 = 1267650600228229401496703205376

Le tableau ci-dessous recense les différentes opérations que l’on peut effectuer sur

des entiers :

Op. Description Exemple

+ Calcule la somme de deux entiers b = a + 2

– Calcule la différence de deux entiers b = 4 – a

* Calcule le produit de deux entiers b = 5 * a

/
Calcule le quotient décimal de deux entiers

(le résultat est de type float)

b = 8/5

(b vaut alors 1.6)

//
Calcule le quotient entier de deux entiers

(division « euclidienne »)

b = 8/5

(b vaut alors 1)

%
Calcule le reste de la division « euclidienne »

de deux entiers

b = 8%5

(b vaut alors 3)

Python respecte l’ordre mathématique des calculs (parenthèses, puis puissances, puis

multiplications et divisons, puis additions et soustractions). Par exemple :

a=12+5*(3-1)**3
print(a) # affiche 52

3. Type « float »

En Python, les nombres décimaux (float) s’écrivent en utilisant un point comme

séparateur décimal (par exemple 1.2 au lieu de 1,2).

Lorsqu’on veut définir un nombre entier comme nombre décimal, on peut le transtyper,

mais il est plus simple d’ajouter « .0 » à la fin de ce nombre :

>>> type(5) # affiche :
>>> type(float(5)) # affiche :
>>> type(5.0) # affiche :

Les opérations que l’on peut effectuer sur les nombres décimaux sont les mêmes que

pour les nombres entiers à la différence près qu’elles renvoient un nombre décimal.

Par exemple :

>>> 2.5*1.2 # affiche 3.0

4. Type « str »

Pour définir une chaîne de caractères (type : str pour string) en Python, il faut placer

cette chaîne entre apostrophes (‘) ou entre guillemets («). Par exemple :

a="Bonjour les amis" # a est de type str
b='Comment allez-vous?' # b est de type str

Si la chaîne de caractères comporte déjà une apostrophe ou un guillemet, cela peut

être problématique :

par exemple, l’instruction :

a='J'ai froid'

est incorrecte à cause de la présence d’une apostrophe dans le texte (Python croit

alors que cette apostrophe indique la fin de la chaîne de caractères et il ne comprend

pas la suite…)

On peut résoudre ce problème de 3 manières différentes :

alterner guillemets et apostrophes : a= »J’ai froid » est correct

échapper l’apostrophe en la faisant précéder d’un antislash (\) : a=’J\’ai froid’ est

correct

placer le texte entre trois apostrophes : a= »’J’ai froid »’ est correct

Une autre caractéristique de la notation avec les triples apostrophes est d’accepter

plusieurs lignes de texte dans la chaîne.

Par exemple :

a= '''Ligne 1
Ligne 2'''
a contient deux lignes de texte

Pour effectuer un saut de ligne, il est également possible d’utiliser le caractère spécial

« \ n ».

Par exemple :

a='Ligne 1\nLigne 2'

a contient aussi deux lignes de texte

L’opérateur + permet de concaténer (mettre bout à bout) deux chaînes de caractère ;

l’opérateur * (suivi ou précédé d’un nombre entier) permet de répéter plusieurs fois

une chaîne :

a='Bonjour '
b='Vincent'
print(a+b) # affiche : Bonjour Vincent
print(3*a) # affiche : Bonjour Bonjour Bonjour

