Python au lycée (1) : Les
variables

1. Types de variables

Dans le langage Python, chaque variable et chaque constante possede un type.
Les principaux types de base sont :

e int (integer) : nombre entier comme 5 ou -12345678901234567890

o float (floating-point number) : nombre décimal comme 0.0001 ou 3.141592654

e str (string) : chaine de caractéres comme « Bonjour toto123 ! » ou « A »

D'autres types (booléens, nombres complexes, listes, ...) seront vus dans des
chapitres ultérieurs.

L'instruction « type » renvoie le type d'une expression. Par exemple :

>>> type(l) # affiche

>>> type(1l.5) # affiche
>>> type('A") # affiche
>>> type(True) # affiche

Remarque :

Dans l'exemple ci-dessus, les chevrons >>> indiquent que les commandes ont été
saisies en mode interactif — sous IDLE par exemple.

Les # indiquent le début d'un commentaire ; ici, les commentaires sont utilisés pour
indiquer le résultat de l'instruction.

AFfectation d’'une valeur a une variable

On affecte une valeur a une variable grace au symbole « = ». Par exemple,
I'instruction :

a=2
e crée la variable a (si elle n'existait pas déja)
o affecte la valeur 2 a la variable a

e définit le type de a (ici : int)

En Python, il n'est pas nécessaire de déclarer préalablement les variables ou leur type.
Python détermine de facon dynamique le type d'une variable en fonction de sa valeur.
Il est ainsi possible de changer le type d'une variable a l'intérieur d'un programme.

Par exemple :

a=1 # a est de type 'int'

a="'Bonjour' # ne provoque pas d'erreur. a est maintenant de type 'str'

Le nom d’une variable doit étre composé uniqguement de lettres, de chiffres et du
symbole « _ » (underscore). Il ne doit pas commencer par un chiffre.

Exemple :

ma_variable=5 # correct
ma-variable=5 # incorrect
variablel=5 # correct

lvariable=5 # incorrect

Enfin, signalons que la casse (distinction majuscule/minuscule) est également prise en
compte :
MaVariable et mavariable représentent deux variables différentes.

Instructions d'entrée/sortie

La fonction print affiche a I'écran la valeur d'une variable ou d'une constante. Il est
possible d'afficher plusieurs valeurs en les séparant par une virgule.

Par exemple :

x=12
print('La valeur de x est',x) # affiche : La valeur de x est 12

print('Le type de x est',type(x)) # affiche : Le type de x est

La fonction input est utilisée pour permettre a l'utilisateur d'entrer des données. Elle
suspend le programme jusqu'a ce que l'utilisateur saisisse un texte. Lorsque
I'utilisateur valide sa saisie a l'aide de la touche la fonction renvoie le texte saisi et le
programme reprend son execution.

Il est possible d'indiquer en parametre de la fonction input une chaine de caracteres
qui sera affichée pour guider I'utilisateur (« prompt »).

Par exemple :

a=input('Saisir une valeur') # a recevra la valeur saisie

print('La valeur de a est',a) # affiche : La valeur de a est

La valeur saisie par l'utilisateur est toujours considérée par Python comme étant de
type str. Pour obtenir un autre type de données, il faut transtyper la valeur saisie.

Exemple :

a=input('Saisir une valeur : ') # a sera du type string
a=int(input('Saisir une valeur entiere : ')) # a sera du type int
a=float(input('Saisir une valeur decimale : ')) # a sera du type float

2. Type « int »

A partir de la version 3 de Python, il n'y a pas de limite (autre que la mémoire de
I'ordinateur) au nombre de chiffres que peut avoir un entier :

print('2 puissance 100 =', 27100)
affiche : 2 puissance 100 = 1267650600228229401496703205376

Le tableau ci-dessous recense les différentes opérations que I'on peut effectuer sur
des entiers :

Op. Description Exemple
+ Calcule la somme de deux entiers b=a+2
- Calcule la difféerence de deux entiers b=4-a

* Calcule le produit de deux entiers b=5%*a

/ Calcule le quotient décimal de deux entiers b=28/5
(le résultat est de type float) (b vaut alors 1.6)
Calcule le quotient entier de deux entiers b=28/5
/l - -
(division « euclidienne ») (b vaut alors 1)
o Calcule le reste de la division « euclidienne » b=8%5
° de deux entiers (b vaut alors 3)

Python respecte I'ordre mathématique des calculs (parenthéses, puis puissances, puis
multiplications et divisons, puis additions et soustractions). Par exemple :

a=12+5%(3-1)**3
print(a) # affiche 52

3. Type « Float »

En Python, les nombres décimaux (float) s'écrivent en utilisant un point comme
séparateur décimal (par exemple 1.2 au lieu de 1,2).

Lorsqu’on veut définir un nombre entier comme nombre décimal, on peut le transtyper,
mais il est plus simple d'ajouter « .0 » a la fin de ce nombre :

>>> type(5) # affiche :
>>> type(float(5)) # affiche :
>>> type(5.0) # affiche :

Les opérations que I'on peut effectuer sur les nombres décimaux sont les mémes que
pour les nombres entiers a la différence pres qu’elles renvoient un nombre décimal.

Par exemple :

>>> 2.5%1.2 # affiche 3.0

4. Type « str»

Pour définir une chaine de caracteres (type : strpour string) en Python, il faut placer
cette chaine entre apostrophes (‘) ou entre guillemets («). Par exemple :

a="Bonjour les amis" # a est de type str

b='Comment allez-vous?' # b est de type str

Si la chaine de caracteres comporte déja une apostrophe ou un guillemet, cela peut
étre problématique :
par exemple, l'instruction :

a='J"'ai froid'

est incorrecte a cause de la présence d'une apostrophe dans le texte (Python croit
alors que cette apostrophe indique la fin de la chaine de caracteres et il ne comprend
pas la suite...)

On peut résoudre ce probléeme de 3 manieres différentes :

e alterner guillemets et apostrophes : a= »J'ai froid » est correct

e éechapperl'apostrophe en la faisant précéder d'un antislash (\) : a=Ulai froid’ est
correct

e placer le texte entre trois apostrophes : a= »'Jai froid »' est correct

Une autre caractéristique de la notation avec les triples apostrophes est d'accepter
plusieurs lignes de texte dans la chaine.

Par exemple :

a= Ligne 1

Ligne 2

a contient deux lignes de texte

Pour effectuer un saut de ligne, il est également possible d'utiliser le caractere spécial

«\no».

Par exemple :

a='Ligne 1\nLigne 2'

a contient aussi deux lignes de texte

L'opérateur + permet de concaténer (mettre bout a bout) deux chaines de caractere ;
I'opérateur * (suivi ou précédé d'un nombre entier) permet de répéter plusieurs fois
une chaine :

a="'Bonjour
b="Vincent'
print(a+b) # affiche : Bonjour Vincent

print(3*a) # affiche : Bonjour Bonjour Bonjour

