Algorithmes : Tests et boucles

Les algorithmes que nous avons utilisés dans le chapitre précédent exécutent toujours
la méme tache ce qui limite leur intérét. Les tests et les boucles vont enrichir nos
algorithmes leur permettant d'agir différemment en fonction des données entrées par
I'utilisateur.

1. Conditions

Une condition est une expression qui peut prendre I'une des deux valeurs suivantes
vrai ou faux. On dit également que c'est une valeur de type « logique » ou
« booléen ».

Les principaux opérateurs de comparaison que vous rencontrerez sont les suivants :
e égala (=enpseudo code)

o différent de (!= en pseudo code)

e strictement supérieur (> en pseudo code)

e strictement inférieur (< en pseudo code)

e supérieur ou égal (> = en pseudo code)

e inférieur ou égal (< = en pseudo code)

Ces comparaisons n‘ont un sens que si les variables que I'on compare sont de méme
type.

Conditions composées

On peut écrire des conditions plus complexes en reliant des comparaisons a l'aide des
opérateurs logiques ET, OU et NON.

Condition 1 ET condition 2 sera vraie si les deux conditions sont toutes les deux
vraies.

Par exemple, la condition : « age supérieur a 5 ET age inférieur a 10 » sera vraie si
la variable age est strictement comprise entre 5 et 10.

Condition 1 OU condition 2 sera vraie si I'une au moins des deux conditions est
vraie.

Par exemple, la condition « prénom=Jean OU nhom=Dupont » sera vraie pour :
e Jean Dupont (conditions 1 et 2 vraies)
e Jean Durand (condition 1 vraie)

o Pierre Dupont (condition 2 vraie)

mais fausse pour

e Pierre Durand (conditions 1 et 2 fausses)

NON (condition 1) sera vraie si et seulement si condition 1 est fausse.

Par exemple : « NON (x < 3) » seravraiesix>=3

2. Tests

Définition

Un test est une instruction qui permet d'effectuer un traitement différent selon
qu'une condition est vérifiée ou non.

Premiére forme

La premiere forme possible est |la suivante :

si condition alors

instructions

fin si
Les instructions ne seront exécutées que si la condition est vérifiée. Par exemple :

variable

X : entier

début algorithme
lire x

si x > 10 alors

X prend la valeur 10
fin si

afficher x

fin algorithme

Si l'utilisateur entre un entier supérieur a 10 l'algorithme affichera 10 sinon il affichera le
nombre saisi par l'utilisateur.

Seconde forme

La seconde forme est Iégérement plus complexe :

si condition alors
instructions 1
sinon

instructions 2

fin si

Si la condition est vraie, I'algorithme effectuera les « instructions 1» puis passera aux
instructions situées apreés le « fin si ».

Si la condition est fausse, I'algorithme effectuera les « instructions 2 » puis passera
aux instructions situées apres le « fin si ».

Exemple

variables

age, prix : entier

début algorithme

afficher "entrez votre age :
lire age

si age < 16 alors afficher "vous bénéficiez du tarif réduit" prix prend la

valeur 10 sinon afficher "vous ne bénéficiez pas du tarif réduit" prix

prend la valeur 15 fin si afficher "vous devez payer", prix, "euros" fin

algorithme
Si vous entrez 15 comme age, vous obtiendrez le résultat suivant :

Vous bénéficiez du tarif réduit
Vous devez payer 10 euros

Si vous entrez 16 comme age, vous obtiendrez :

Vous ne bénéficiez pas adu tarif réduit
Vous devez payer 15 euros

3. Boucle

Définition

Une boucle permet de répéter un traitement un certain nombre de fois.

Premiére forme

Boucle « Tant que »

tant que condition
instructions

fin tant que

L'algorithme ci-dessus effectuera les instructions tant que la condition sera vraie. Dés
que la condition devient fausse, on se branchera sur l'instruction suivant le fin tant
que.

Exemple

variables
nombre, somme: nombres
continuer: texte

début algorithme

continuer prend la valeur "oui" // initialisation
afficher 'entrez un nombre :'

lire nombre

somme prend la valeur nombre

tant que continuer="oui"

afficher "entrez le nombre suivant”

lire nombre

somme prend la valeur somme+nombre

afficher "voulez-vous continuer (oui/non)"

lire continuer

fin tant que

afficher "la somme des nombres entrés est" somme

fin algorithme
L'algorithme précedent demande a l'utilisateur d'entrer un premier nombre.
Puis il lui demande s'il veut entrer un autre nombre.

Tant que l'utilisateur répond « oui », I'algorithme lui demande un houveau nhombre qu'il
additionne au contenu de la variable « somme ».

Dés que l'utilisateur répond autre chose que « oui », I'algorithme sort de la boucle,
affiche le total et se termine.

Deuxiéme forme

Boucle « Pour »

Exemple

variables

i : nombre

début algorithme

pour i variant de 1 a 10
instructions

fin pour

fin algorithme

L'algorithme ci-dessus va exécuter dix fois les instructions situées dans la boucle.
Plus précisément :

e La premiére fois que l'algorithme va rencontrer I'instruction « pour i variant de 1a
10 », il va affecter la valeur 1a i; comme i est strictement inférieur a 10, il passe
ensuite aux instructions situées a l'intérieur de la boucle

e apres les avoir exécutées, la ligne « fin pour » va faire boucler l'algorithme et le
faire revenir a l'instruction « pour i variant de 1a 10 »

o Laseconde fois (et les fois suivantes...) que I'algorithme va exécuter l'instruction
« pour i variant de 1a 10 », il va :

e ajouter 1ai (on dit incrémenter i)

e siiestinférieur ou égal a 10, il passe aux instructions situées a l'intérieur de la
boucle

e siiestsupérieur a 10, il passe aux instructions situées apres la ligne « fin tant
que »

Remarque

Si I'on souhaite incrémenter I'indice avec une valeur différente de 1 on utilise
I'instruction :

pour i variant de ... a ... avec un pas de
Par exemple :
pour i variant de 2 a 8 avec un pas de 2

i va prendre successivement les valeurs : 2; 4 ; 6; 8 (et il quittera la boucle lorsqu'il
vaudra 10)

Exemple

L'algorithme ci-dessous affiche les carrés des 21 premiers nombres entiers naturels
(de 0 a 20)

variables

n : nombre

C : nombre

début algorithme

pour n variant de @ a 20

¢ prend la valeur n*n

afficher "Le carré de ", n, " est ", c
fin pour

fin algorithme

Remarque

On utilise généralement une instruction « pour » lorsqu’on connait le nombre
d'itérations a réaliser dés le début de la boucle et une instruction « Tant que » lorsque
ce nombre est inconnu ou difficile a déterminer.

