
Les algorithmes que nous avons utilisés dans le chapitre précédent exécutent toujours

la même tâche ce qui limite leur intérêt. Les tests et les boucles vont enrichir nos

algorithmes leur permettant d’agir différemment en fonction des données entrées par

l’utilisateur.

1. Conditions

Une condition est une expression qui peut prendre l’une des deux valeurs suivantes

vrai ou faux. On dit également que c’est une valeur de type « logique » ou

« booléen ».

Les principaux opérateurs de comparaison que vous rencontrerez sont les suivants :

égal à (= en pseudo code)

différent de (!= en pseudo code)

strictement supérieur (> en pseudo code)

strictement inférieur (< en pseudo code)

supérieur ou égal (> = en pseudo code)

inférieur ou égal (< = en pseudo code)

Ces comparaisons n’ont un sens que si les variables que l’on compare sont de même

type.

Conditions composées

On peut écrire des conditions plus complexes en reliant des comparaisons à l’aide des

opérateurs logiques ET, OU et NON.

Algorithmes : Tests et boucles

Condition 1 ET condition 2 sera vraie si les deux conditions sont toutes les deux

vraies.

Par exemple, la condition : « âge supérieur à 5 ET âge inférieur à 10 » sera vraie si

la variable âge est strictement comprise entre 5 et 10.

Condition 1 OU condition 2 sera vraie si l’une au moins des deux conditions est

vraie.

Par exemple, la condition « prénom=Jean OU nom=Dupont » sera vraie pour :

Jean Dupont (conditions 1 et 2 vraies)

Jean Durand (condition 1 vraie)

Pierre Dupont (condition 2 vraie)

mais fausse pour

Pierre Durand (conditions 1 et 2 fausses)

NON (condition 1) sera vraie si et seulement si condition 1 est fausse.

Par exemple : « NON (x < 3) » sera vraie si x > = 3

2. Tests

Définition

Un test est une instruction qui permet d’effectuer un traitement différent selon

qu’une condition est vérifiée ou non.

Première forme

La première forme possible est la suivante :

si condition alors
instructions

fin si

Les instructions ne seront exécutées que si la condition est vérifiée. Par exemple :

variable

x : entier
début algorithme

lire x
si x > 10 alors
x prend la valeur 10

fin si
afficher x
fin algorithme

Si l’utilisateur entre un entier supérieur à 10 l’algorithme affichera 10 sinon il affichera le

nombre saisi par l’utilisateur.

Seconde forme

La seconde forme est légèrement plus complexe :

si condition alors
instructions 1

sinon

instructions 2

fin si

Si la condition est vraie, l’algorithme effectuera les « instructions 1 » puis passera aux

instructions situées après le « fin si ».

Si la condition est fausse, l’algorithme effectuera les « instructions 2 » puis passera

aux instructions situées après le « fin si ».

Exemple

variables

âge, prix : entier
début algorithme

afficher "entrez votre âge :"

lire âge
si âge < 16 alors afficher "vous bénéficiez du tarif réduit" prix prend la
valeur 10 sinon afficher "vous ne bénéficiez pas du tarif réduit" prix

prend la valeur 15 fin si afficher "vous devez payer", prix, "euros" fin
algorithme

Si vous entrez 15 comme âge, vous obtiendrez le résultat suivant :

Vous bénéficiez du tarif réduit

Vous devez payer 10 euros

Si vous entrez 16 comme âge, vous obtiendrez :

Vous ne bénéficiez pas du tarif réduit

Vous devez payer 15 euros

3. Boucle

Définition

Une boucle permet de répéter un traitement un certain nombre de fois.

Première forme

Boucle « Tant que »

tant que condition
instructions

fin tant que

L’algorithme ci-dessus effectuera les instructions tant que la condition sera vraie. Dès

que la condition devient fausse, on se branchera sur l’instruction suivant le fin tant

que.

Exemple

variables

nombre, somme: nombres
continuer: texte
début algorithme

continuer prend la valeur "oui" // initialisation
afficher 'entrez un nombre :'
lire nombre
somme prend la valeur nombre

tant que continuer="oui"
afficher "entrez le nombre suivant"
lire nombre
somme prend la valeur somme+nombre
afficher "voulez-vous continuer (oui/non)"
lire continuer
fin tant que

afficher "la somme des nombres entrés est" somme
fin algorithme

L’algorithme précédent demande à l’utilisateur d’entrer un premier nombre.

Puis il lui demande s’il veut entrer un autre nombre.

Tant que l’utilisateur répond « oui », l’algorithme lui demande un nouveau nombre qu’il

additionne au contenu de la variable « somme ».

Dès que l’utilisateur répond autre chose que « oui », l’algorithme sort de la boucle,

affiche le total et se termine.

Deuxième forme

Boucle « Pour »

Exemple

variables

i : nombre
...

début algorithme

...
pour i variant de 1 à 10
instructions

fin pour
...
fin algorithme

L’algorithme ci-dessus va exécuter dix fois les instructions situées dans la boucle.

Plus précisément :

La première fois que l’algorithme va rencontrer l’instruction « pour i variant de 1 à

10 », il va affecter la valeur 1 à i; comme i est strictement inférieur à 10, il passe

ensuite aux instructions situées à l’intérieur de la boucle

après les avoir exécutées, la ligne « fin pour » va faire boucler l’algorithme et le

faire revenir à l’instruction « pour i variant de 1 à 10 »

La seconde fois (et les fois suivantes…) que l’algorithme va exécuter l’instruction

« pour i variant de 1 à 10 », il va :

ajouter 1 à i (on dit incrémenter i)

si i est inférieur ou égal à 10, il passe aux instructions situées à l’intérieur de la

boucle

si i est supérieur à 10, il passe aux instructions situées après la ligne « fin tant

que »

Remarque

Si l’on souhaite incrémenter l’indice avec une valeur différente de 1 on utilise

l’instruction :

pour i variant de ... à ... avec un pas de ...

Par exemple :

pour i variant de 2 à 8 avec un pas de 2

i va prendre successivement les valeurs : 2; 4 ; 6; 8 (et il quittera la boucle lorsqu’il

vaudra 10)

Exemple

L’algorithme ci-dessous affiche les carrés des 21 premiers nombres entiers naturels

(de 0 à 20)

variables

n : nombre

c : nombre
début algorithme

pour n variant de 0 à 20
c prend la valeur n*n

afficher "Le carré de ", n, " est ", c
fin pour
fin algorithme

Remarque

On utilise généralement une instruction « pour » lorsqu’on connaît le nombre

d’itérations à réaliser dès le début de la boucle et une instruction « Tant que » lorsque

ce nombre est inconnu ou difficile à déterminer.

